Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials
نویسندگان
چکیده
This paper assesses the feasibility of two industrial wastes, fly ash (FA) and rice husk ash (RHA), as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i) halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S); (ii) halloysite activated with rice husk ash dissolved into KOH solution (HL-R); (iii) FA activated with the alkaline solution realized with the rice husk ash (FA-R). Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP) was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation.
منابع مشابه
Prediction Total Specific Pore Volume of Geopolymers Produced from Waste Ashes by Fuzzy Logic
In the present work, total specific pore volume of inorganic polymers (geopolymers) made from seeded fly ash and rice husk bark ash has been predicted by fuzzy logic. Different specimens, made from a mixture of fly ash and rice husk bark ash in fine and coarse form together with alkali activator made of water glass and NaOH solution, were subjected to porosimetry tests at 7 and 28 days of curin...
متن کاملOptimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash
Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerge...
متن کاملFly Ash Porous Material using Geopolymerization Process for High Temperature Exposure
This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture ...
متن کاملCombine Use of Fly Ash and Rice Husk Ash in Concrete to Improve its Properties (RESEARCH NOTE)
This research paper describes the study of combined effect of Fly Ash (FA) and Rice Husk Ash (RHA) on properties of concrete as partial replacement of Ordinary Portland Cement (OPC). These by-products are having high pozzolanic reactivity. In this research, the composition of mix was used with 10% RHA along with 10, 20 and 30% FA as partial replacement of cement. In this study, the compressive ...
متن کاملUtilization of Rice Husk and Their Ash: A Review
Due to rapid growth in population and industrialization, some new technologies are made for waste utilization and cost reduction in industrial processing by using rice husk (lignocellulosic biomass) as a valued material. In this paper various industrial and domestic application of rice husk and rice husk ash are discussed. Rice husk act as adsorbent for removing heavy metals from wastewater. In...
متن کامل